\qquad

7-2. DO CIRCLES MAKE THE BEST WHEELS?

Examine the shapes below. Would logs of any of these shapes be able to roll heavy objects in a similar fashion? Be prepared to defend your conclusion!

b.

d.

Your Opinion:

7-8. A rectangle has one side of length 11 mm and a diagonal of 61 mm . Draw a diagram of this rectangle and find its width and area.

7-12. IS THERE MORE TO THIS CIRCLE?

Use listed below circle (image you fold, label and cut by following steps a, b and c.

7-13. ADDING DEPTH

d. Sketch the tetrahedral and tetrahedron (7-14)

7-24

a. In this first puzzle, Bradley decided to test what would happen on the side of a cylinder, such as a soup can. On a can provided by your teacher, find points A and B labeled on the outside of the can. With your team, determine the shortest path from point A to point B along the surface of the can. (In other words, no part of your path can go inside the can.) Describe how you found your solution.
b. What if the shape is a cube? Using a cube provided by your teacher, predict which path would be the shortest path from opposite corners of the cube (labeled points C and D in the diagram at right). Then test your prediction. Describe how you found the shortest path.

Write formulas for area and circumference.

7-47. If $\triangle A B C \cong \triangle D E C$, which of the statements below must be true? Justify your conclusion. Note: More than one statement may be true.
a. $\overline{A C} \cong \overline{D C}$
b. $m \angle B=m \angle D$
c. $\overline{A B} / / \overline{D E}$
d. $A D=B E$

e. None of these are true.

